Mexans.

HIGH-CAPACITY HIGH TEMPERATURE SUPERCONDUCTING POWER CABLES

Jean-Maxime SAUGRAIN NEXANS Corporate VP Technical

> IASS Workshop Postdam – May 13, 2011

High-capacity High Temperature Superconducting (HTS) cables provide electric utilities with a new tool to address key drivers

Growing power consumption in urban areas Additional power can be transmitted through existing right-of-way

Safety

Transformers can be removed from city centers through high-capacity medium voltage HTS cables

Eco-friendliness

- . No thermal or magnetic impact on the environment
- . Lower losses
- . The cooling fluid, liquid nitrogen, is a low-cost, abundant and environment-friendly fluid

Contents

- Introduction to HTS power cables
- High-capacity HTS cable projects
- Expectations
- Conclusion

Contents

Introduction to HTS power cables

- High-capacity HTS cable projects
- Expectations
- Conclusion

Mexans

Introduction to HTS power cables

∬e x a n s

Introduction to HTS power cables Cryogenic envelope

- 1. Corrugated inner tube
- 2. Low-loss spacer
- 3. Vacuum space (<10⁻⁵ mbar)
- 4. Multilayer superinsulation
- 5. Corrugated outer tube
- 6. PE jacket (optional)

Nexans is the world leader in flexible cryostats with more than 30 years of experience

Contents

- Introduction to HTS power cables
- High-capacity HTS cable projects
- Expectations
- Conclusion

LIPA1 project

Overview

Mexans

Demonstrating feasibility of HV HTS cable technology

- Long Island Power Authority Holbrook Substation
- 600 m long cold dielectric cable system
 138kV/2400A ~ 574MVA
- Design fault current: 51 kA
 @ 12 line cycles (200ms)
- 600 meter cable pulled in underground HDPE conduit

World's longest HTS cable and first installation at transmission voltage level

Mexans

Mexans

LIPA1 project Termination concept

- Vertical part:
 - Thermal gradient management (from 77 to 300 K)
 - Connection to grid

- Horizontal part:
 - Connection to HTS cable
 - Management of cable thermal shrinkage

NEXANS PROPRIETARY

LIPA1 project Qualification of prototypes

- Cable and termination prototypes were tested in a dedicated high voltage test field in Hanover
- The 30 m x 12 m x 9 m screened room is connected to a liquid nitrogen cooling system liquid nitrogen (temperature around –200°C)

∬e x a n s

- Pulling was carried out for all phases without any issue
- Cryogenic envelope vacuum integrity verified after pulling

LIPA1 project Cable pulling

LIPA1 project Assembling of terminations

Terminations were assembled on site after cable pulling

LIPA1 project Assembling of terminations

LIPA1 project Connection to grid

World's longest HTS cable successfully energized on April 22, 2008

NEXANS PROPRIETARY

Postdam – May 13, 2011 – 16

Preparing for multi-kilometer HV HTS cables

- Project funded by the U. S. Department of Energy
- Same partners (American Superconductor, Air Liquide and LIPA) and same site as for the LIPA1 project

Installation and commissioning around the end of 2011

Supercable project Overview

World's ampacity record: 3200 A

Project funded by Endesa in Spain

- Other partners: ICMAB, Labein
- Key features:
 - One 30-meter phase
 - 24 kV, 3200 A
- Cable manufactured by Nexans and tested in the Hanover laboratory

Project successfully completed in December 2009

NEXANS PROPRIETARY

Main HTS AC cable projects

NEXANS PROPRIETARY

Contents

- Introduction to HTS power cables
- High-capacity HTS cable projects
- Expectations
- Conclusion

Expectations High-capacity HTS AC cables

With HTS AC cables, the same power can be transmitted at a lower voltage

∬e x a n s

High-capacity HTS **AC** cables Technical hurdles to be overcome

- High-current HTS tapes (to minimize the number of HTS layers):
 - Avoid current distribution issues
 - Reduces mechanical issues
- Low-loss system:
 - HTS tapes with low AC-losses
 - Low-loss cryogenic envelope
 - High-efficiency cooling system
- High-voltage accessories (complexity increasing quickly with voltage):
 - In-field demonstration of 138 kV terminations completed
 - Ongoing developments: 138 kV joint, 154 kV system, 275 kV system

Losses similar to the ones of conventional systems

NEXANS PROPRIETARY

MexansHTS cable project under discussionSupply of city center with MV HTS cable

High-power 10 kV link for feeding the center of Essen

Mexans

110 kV substation (Herkules in suburban area)

Key features:

- Cable system with concentric phases
- World's first combination with HTS fault current limiter

End user: RWE

Funding: RWE and BMWi

Expectations High-capacity HTS **DC** cables

With HTS DC cables, a much larger power can be transmitted

Mexans

High-capacity HTS **DC** cables Technical hurdles to be overcome

- High-current HTS tapes (to minimize the number of HTS layers):
 - Reduces mechanical issues
- Low-loss system:
 - Low-loss cryogenic envelope
 - High-efficiency cooling system
- High-voltage accessories (complexity increasing quickly with voltage):
 - Laboratory demonstration at Nexans of 200 kV termination

Lower losses than with conventional systems

NEXANS PROPRIETARY

Contents

- Introduction to HTS power cables
- High-capacity HTS cable projects
- Expectations
- Conclusion

∬e x a n s

- The feasibility of HTS AC power cables has been demonstrated up to 138 kV and this technology is now mature enough for in-field implementation
- Demonstration projects are now moving to longer lengths (up to 6 km !), higher voltages eyond 200 kV for both AC and DC !) and greater currents (up to 5 kA AC whereas more than 10 kA DC are envisioned !)
- High-capacity HTS cable systems constitute a new energy-efficient solution to improve congestion management in both distribution and transmission AC power grids but there are only economically viable in some niche applications
- HV HTS DC systems are expected to lead to much lower losses than conventional systems
- The industry needs to focus on reducing the HTS technology cost
- Incentives from local governments could help significantly

Mexans.

Thank you for your attention !